III B. TECH I SEMESTER REGULAR EXAMINATIONS, FEB - 2022 ANTENNAS AND WAVE PROPAGATION (Electronics And Communication Engineering)

Time: 3 Hours

Max. Marks: 60

Note: Answer ONE question from each unit (5 × 12 = 60 Marks)

UNIT-I

1.	a)	Define the following related to Antennas.	[6M]
		(1) Gain (11) Directivity (111) Efficiency	
	b)	An 80% efficiency of antenna has power gain 50. Find the directivity gain of the antenna.	[6M]
		(OR)	
2.	a)	What is effective height of the antenna? Derive the expression for effective height?	[6M]
	b)	Explain different field regions of antenna?	[6M]
		UNIT-II	
3.	a)	Determine the radiation resistance of a small electric dipole antenna?	[6M]
	b)	Prove that the effective heights of transmitting and receiving antennas are same?	[6M]
		(OR)	
4.	a)	Write a short note on Halfwave dipole antenna.	[6M]
	b)	Explain any one antenna theorem?	[6M]
		UNIT-III	
5.	a)	Classify the antenna array? Derive the field equation of an N element antenna array?	[6M]
	b)	Derive the field equations of minor lobe maximum and minimum of two-element point source in broadside operating mode?	[6M]
		(OR)	
6.	a)	Explain about the Binomial array.	[6M]

b) Derive the condition for maximum directivity in end-fire array? [6M]

(R19)

UNIT-IV

7.	a)	Derive and design 7-element Yagi-Uda antenna?	[6M]			
	b)	Give the constructional and operation details of helical antenna with neat sketches?	[6M]			
(OR)						
8.	a)	Explain various feeds used for parabolic antennas? What is spill-over?	[6M]			
	b)	Explain the measurement of gain by comparison method?	[6M]			
		UNIT-V				
9.	a)	Define Tropospheric propagation and derive the expression for radius of curvature path.	[6M]			
	b)	Explain the features of Sky Wave (Ionosphere) propagation?	[6M]			
(OR)						
10.	a)	Derive the fundamental equation for free space propagation.	[6M]			
	b)	Explain skip distance with necessary equations?	[6M]			

* * * * *